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Abstract. We completely classify the symmetries of the Fokker—Planck equation in two spatial
dimensions with a constant positive-definite diffusion matrix. We apply these results to construct
group-invariant solutions for a physically interesting family of Fokker—Planck equations.

1. Preliminaries

The time evolution of a stochastic process with continuous motion is described by the Fokker—
Planck equation:

dp(@. 1) ==Y [Ai@)p@ D]+3 Y %d;[Bij@)p(x. 1] (1)
i=1 i,j=1
where the vectoA = (A4, ..., A,) and the symmetric matri = (B;;) are known as therift

vectorand thediffusion matrix respectively. The importance of the Fokker—Planck equation,
which arisesin alarge variety of phenomenain physics, chemistry, and biology, [1-3], cannotbe
overestimated. The determination of the local Lie symmetries of the Fokker—Planck equation—
which, in turn, may be used to find group-invariant solutions by solving a differential equation
in fewer independent variables [4,5]—is therefore a relevant problem. In one spatial dimension
complete results are known. The symmetries of some particular cases of the Fokker—Planck
equation were first analysed in [6—-8]. Cicogna and Vitali [9, 10] and Rudra [11], provided
an exhaustive classification of the symmetries of a generic Fokker—Planck equation in one
spatial dimension. The situation in higher dimensions is remarkably different. In fact, to
the best of the author’'s knowledge, the only case which has been studied in the literature is
a special form of Kramers’ equation in 2 + 1 dimensions, for which the diffusion matrix is
constant and degenerate [8]. The aim of this paper is precisely to study the symmetries of the
Fokker—Planck equation in two spatial dimensions with a constant positive-definite diffusion
matrix. It should be emphasized that the diffusion matrix is constant in many situations of
physical interest, e.g. in a Rayleigh or in an Ornstein—Uhlenbeck process. Any Fokker—Planck
equation (1) possesses thigial symmetries associated to the time-translational invariance and
linearity of the equation. We shall obtain in what follows explicit conditions for the existence
of nontrivial symmetries of the Fokker—Planck equation. Then, in section 2, we determine
the general solution of these conditions in the particular case in which the drift va&dtor
irrotational and the Fokker—Planck equation is equivalent to thed8atger equation (with
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imaginary time). We completely classify the Fokker—Planck equations admitting nontrivial
symmetries, and we present the corresponding symmetry generators. Our results are consistent
with the classification of the symmetries of the time-dependentd8ahger equation with
a time-independent potential previously found by Boyer [12]. In section 3 we present the
classification of the symmetries in the case in which the drift vectootgrotational. Finally,
in section 4 we make use of our classification to construct explicit group-invariant solutions
for a physically relevant class of Fokker—Planck equations.

Under the above assumptions, we can rewrite the Fokker—Planck equation (1) in the formt

u, = —V-(Au) + gAu (2)

where 8 is a nonzero real constant. We shall tagke= 1 without any loss of generality.
Following the well known Olver procedure [4], our purpose is to determine all functipns
7 and¢ such that the second prolongation of the vector field

X=E@y, t,u)d +n(x,y,t,u)dy +1(x,y,t,u)d +d(x,y,1,u)dy )

is tangent to the solution manifold of equation (2). Equating to zero the coefficients of
the monomials ins and its derivatives containing second- and third-order derivatives, one
immediately obtains

Tt E=oxtEOyrR0O)  n=2y—a0x 0. @)

The coefficients of the terms irf andu? now imply that

¢ =¢1(x, y, u + ¢olx, y, 1) (5)
wheregpo must be a solution of the Fokker—Planck equation (2). The remaining three conditions
for u,, u, andu then lead to the equations
Vor=—art oLt VIA—Edr =6 +T AVIA=p +(p-V)A ©)
by, = T—g(r-A—l)—%(2M+T-VM)—Sltr/\A+Elr/\VM+p,-A—p-VM @)
where

r=(x,) J=<_01 é) p = (%0, 10) M= 3(A%+V . A).

Note that in two dimensions A w = viw, — vowy iS @ scalar. Imposing that,, = ¢1,.,
@1 = Pux ANde1y, = P1,y, We obtain the compatibility conditions
—251,=%(23+r-VB)—§1r/\VB+p~VB 8)
Dlr = 2@ 4T V)VM + £, Jr+ 6V AVM) +p, = (p- VIVM

- —%BJT+.§1,B7'—BJ,0, 9)
whereB = V A A. Once a solution of equations (8), (9) has been obtained, one simply
integrates (6) and (7) to determine the corresponding fungtjor{Recall that in one spatial

dimension there is only one such compatibility condition [9].) In general, the compatibility
conditions (8), (9) possess only the obvious solution

T =8=6=n=0 (10)

T We adopt here the usual convention of the literature on symmetries of differential equations of denoting the dependent
variable byu.
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corresponding to theivial symmetries
X1=19 X2 = ud, X3 = ¢od,

which, of course, reflect the time-translational invariance and linearity of the Fokker—Planck
equation. However, just as in one spatial dimension, the compatibility conditions admit
nontrivial solutions provided there is a linear relationship between the coefficient functions of
7, &1, & andng and their time derivatives [10, 11].

2. Irrotational case: VA A=0

We shall assume in this section that the drift vectbiis irrotational, i.e. thatB vanishes
identically. The physical significance of this condition, known as the conditictetdiled
balance has received ample study in the literature, [2,3]. As a direct consequence, there exists
afunctionA such thatd = V A. Note that in this case the scale transformation v = e 4u

will map the Fokker—Planck equation (2) into the time-dependentd8ahger equation with
imaginary time given by

—v,:—%Av+Mv. (12)

It follows immediately that two Fokker—Planck equations (2) with the same fungfidrave
isomorphic symmetry algebras. The RHS of equations (8) and (9) vanish identically, so in
particularg; is a constany. We can then integrate equation (6), obtaining

¢1=—%r2+%r~VA—yrAVA—pt~r+p-VA+<p (12)

where the functiomp(¢) is determined up to a constant by equation (7) once the compatibility
conditions have been fulfilled. Moreover, the LHS of the vector-valued equation (9) may be
readily written as a gradient, leading to the single scalar equation

a)+%r2—%(2+T-V)M+y(r/\VM)+pn-r—p-VM:O (13)

wherew (1) is an arbitrary function. Our purpose is to determine all possible linear relationships
between the functions ¥2, 2 +r - V)M, r A VM, x, y, M, and M, which appear in
equation (13). Each of the relationships may lead to a nontrivial symmetry of the Fokker—
Planck equation. In order to obtain these relationships one needs to find the general solution
of certain partial differential equations.

The most general functioM consistent withr, £ 0 must satisfy the differential equation

2+r-V)M =x(r AVM) + puM, +vM, +ArP+ux+vy+o (14)
for some real parameteks u, v, 2, 1/, v ando. The general solution of equation (14) is
M = C(xlogF +0)F 2+ ci? +ax + by + co (15)
where(C is an arbitrary function, and
¥ =7c0sf = x +xq y=rsind =y+yy
_ AV — 1 _ Au+v
0= T2 = T 2 (15)
A 3 + A — 20 (Ayo + 3x0) b 3V —au + 20 (Axo — 3yo)
C = — a = =
4 9+22 9 +22

with ¢o an arbitrary constant. One can likewise determine the most general furidtion
compatible withr, = 0 andy # 0 by solving the differential equation

rAVM =uM, +vM,+p'x+V'y+o (16)
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for real parameterg, v, u’, v’ ando. The general solution of equation (16) is

M=CF) —Vi+py+do 17
where(C is an arbitrary function, and
t=7rCcosd =x—v y=rsing=y+pu d=pv—w' +o. a7
Note thatM in equation (17) reduces to the form (15) if the constawanishes and’(r) is a

linear combination of?, 72 and 1. Finally, any functiod/ consistent withr, = y = 0 and
& # O satisfies

M,=vM,+u'x+vy+o (18)
for real parameters, i/, v/ ando. The general solution of (18) is
M= C(vx+y)+%(/L/+vv/)x2+v/xy+ox. (19)

The form of the Fokker—Planck equation (2) is invariant under rotations, translations and
dilatations of the formir, r) — (A7, A%t), A — A~1A. Since these operations do not modify
the symmetry properties of the equation, we shall assume without any loss of generality that
x0 = yo = 0 in equations (13 andyu = v =0in (17),s0Xx = x, y = y, 7 = r andd = 6.
In order to determine explicitly nontrivial solutions fey &g, no andé; = y, we substitute the
expressions (15), (17) and (19) farinto (13), and impose that the time-dependent coefficients
of each of the linearly independent functions of the spatial variables vanish identically. In so
doing, one needs to consider new possible linear relations for some particular forms of the
arbitrary functionC appearing inM. The functiony in equation (12) can then be determined
up to a constant from equation (7). Finally, the corresponding nontrivial symmetry generators
are obtained by substituting equations (4), (5) and (12) into (3):

X = (%x+yy+€o>8x+(%y—yx+no>8y+r8z

+(—%r2+%r-VA—yTAVA—p,-r+p-VA+<p)u8u (20)

wherep = (&, no) and A satisfies the nonlinear PDE
2M = (VA)* + AA. (21)

In what follows we provide the complete list of functiom&for which the Fokker—Planck
equation (2) admits nontrivial symmetries, up to possible translations, rotations and dilatations.
For each such functiod we give the form oft, &, no, ¥ andg, from which the reader can
immediately obtain the associated nontrivial symmetry generators from equation (20) by giving
suitable values to the group parametersg;, y ands;. We also denote by the maximum
number of nontrivial symmetry generators. Note that in general the fungtioannot be
determined explicitly fromM—a step that would require solving the nonlinear PDE (21).
However, giverany Fokker—Planck equation (2) with an irrotational drift vectbr= V A, it
may be readily verified whether the corresponding funclibbelongs to the list.

Case 1.1aM = £ +by +cq; Co # 0, (s = 4).

bé 3bs
‘[:821‘24'51[ J/:.’;:():O ﬂo:—22t3+—41[2+ﬁ1[+ﬁ0
b%s b%s b
= ——821‘4 — —41 3 (_}231 +Co52> ?— (82 + cob1 + bPo)t.
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Case 1.1t M = § +cr2+by +co; Co £ 0, (s = 4).

T = Slez*/z’ + 828_2@t y=%&=0
bé - bé - ; X
flo = 21 V2t 4 22 e—2«/Zt + Bi€ 2ct +[32e—«/§t
A LC A/ £C

b? b2
Qo =— <V2C+Co+zc)5162@t + <\/Z—Co— E) 32872 2t

_ bﬂl e ZCt+ ble e 26‘[.

Ve V2

Case 1.2a:M = C(@)r 2 +co, (s = 2).
T = 812 + 81t y =& =mn=0 @ = —codat? — (82 + cody)t
with C(9) # (Cocost + Cysing)~2 andC’ # 0.

Case 1.2b:M = C(O)r—2+cr2+cg, (s = 2).

T = 8172+ §pe V2 y =8 =mn=0

== (\/2—0 + Co) 5167V + (x/Z—c - co> 56722
with C(9) # (Cocost + Cysind)~2 andC’ # 0.

Case 1.3:M = C(rlogr +0)r2?+co; C' #0+# A, (s = 1).

2y 2coy
= §o =10 @ .

Case 1.4aM = Cor 2 +ax + by +co; Co #0, (s = 3).
T = 817 + 8yt &o=mno=0 @ = —codat® — (82 + cod1)t
with the constraing, =8, =0ifa #0orb £ 0.

Case 1.4b:M = Cor=2+cr? +ax + by + co; Co # 0, (s = 3).

T = 8,87V + 52V &o=1n0=0

0=- (\/Z + Co) 5,€7V% + (\/Z - co> 82e_2@’
with the constraing, =8, =0ifa #0orb £ 0.

Case 1.5a:M = ax +by +cp, (s = 7).

T = 521‘2 + 81t
as
="

bsy 4 1
no = 72;3 + (8001 + 2ay)i + put + fio

1
2+ 2(36131 — 2b)/)l‘2 + o1t + g

¢ = —5(a® +b*)or* — 3(a® +b*)S11° — (5 (aa1 + by) + o)t
—(82 + cody + aop + bpo)t.

Tt The parametar which appears in cases b and case 1.7a is assumed to be nonzero.



2676 F Finkel

Case 1.5b:M = cr?+ax + by +co, (s = 7).
T = Slez*/z’ + 828_2@t

ad, % ady 5 et _ /3 by

50 — _e2 ct 4 ‘e et 4 o€ ct 4 o€ ct 4 27
v 2c v 2c 2c

bé1 - bdy _, /5 - e ay

_ V2t 4 @ Wt g V2t 4 g o2t EF
Ul T2 NG B1 B2 e

24+ p2 2+ p?
<p=—<v2c+co+a4c )81e2@’+(«/26_60_a4c )82e2 2ct

_aOll + bﬂle 2%t 4 aoy +bpr o et

V2c V2c

Case 1l.6:M =C(r) +dO, (s = 1).

t==10=0 ¢ =dyt
with C(r) # Cor =2+ C1r? + ¢oif d = 0.

Case 1.7a:M = cx?+ax + by + cg, (s = 4).

t=y=0 £ = a18”% + e V2 no = Bt + o
aoy . ady 5 b1
@ 2t 4 e 2ct ,8 [2 _ bﬂol.

VAN 2

Case 1.7b:M = c(x? — y?) +ax + by + co, (s = 4).

t=y=0 fo = 0162 + eV no = pre¥ " + pe

o= 00 vz A2 vz OB DB yma
V2c V2 V=2c V=2c
Case 1.8a:M = C(x) + by, (s = 2).
b
T=y=%§=0 no = Baf + Po <P=—7lf2—bﬂof

with Cox? + ax +cg # C(x) # % * co.

Case 1.8b:M = C(x) +cy? + by, (s = 2).

t=y=%§=0 no = prev2! + pe V!

_ bp1 eVt 4 bB2 ef«/Zt
V2 V2

with Cox? + ax +co # C(x) # % +cx? +¢g.

The listabove could be further reducedt by using pointtransformations preserving the form
of the Fokker—Planck equation (2) involving the dependent variablglthough no attempt
will be made here to determine the complete group of point transformations leaving the form
of equation (2) invariant, we can take advantage in the irrotational case of what is known for

T We prefer to leave the list in its present form so that the reader may check if a given Fokker—Planck equation (2)
possesses nontrivial symmetries without the need to perform complicated transformations.
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the time-dependent Sdidinger equation. In one spatial dimension, the group of projectable
point transformations preserving the form of the time-dependent8iiger equation was
essentially obtained by Ray [13]. A straightforward generalization of Ray’s transformations
was subsequently applied by Kaushal to the time-dependend@nbger equation in 2 + 1
dimensions [14]. Closely following Kaushal, it may be easily verified that the transformation

Fe—tr+ f—ft—ds — (52(0). g2(0))
=7t =] e g = (g1(0), g2 -
v(r, 1) = exp|:'2f—fr2 —fg-r +h(t):| v(r, 1)

maps the time-dependent Sédinger equation (11) into the time-dependent 8dhrger
equation

—U; = —3AU+ Mv
with potential
f4 N2 1 27/
S@P - P (29)
In general, the transformation (22), (23) maps a time-independent potential into a time-
dependentone, unlegsg andh are constants. However, for some particular time-independent
potentials and transformations, the transformed potential is also time independent. Thus, if
the functionsM and M associated to a pair of Fokker—Planck equations (2) with irrotational
drift vectors are related by such a transformation, then the equations themselves are related by
a point transformation, and their symmetry groups are therefore isomorphic. This is precisely
what happens in our list among eachndb subcases. Indeed, if

fofr=—2c g=0  KW=ff ie.  f%=2V2ct h =log f

the functionM of eacha subcase is transformed into the functithof the corresponding
subcase. Moreover, the functiomsin cases 1.5 are equivalent under suitable transformations
of the form (22) toM = 0, so their corresponding Fokker—Planck equations may be reduced
to the heat equation.

M:fZM_%ﬁr2+f2(fg//+2f/g/).r_

3. GenericcaseVA AF0

In this section we shall classify all Fokker—Planck equations (2) (wite: 1) possessing
nontrivial symmetries in the case in which the rotatioRaloes not vanish identically. In the
first step one needs to find the functiah$or which the first compatibility condition (8) admits
solutions different from the trivial solution (10). Just as in the previous section, each linear
relationship between 12 ++ - V)B, r A VB, B, and B, may lead to a nontrivial symmetry.
Note that these linear relationships are in fact first-order linear PDE’s for the rotaftonal
which can be solved in closed form. The explicit forms of the functiBresatisfying one of
these linear relationships, up to possible translations, rotations, and dilatations of the form
(r,t) = (Ar, 2%t), A~ A7LA, are:
Co, . Co , . \
B=—2+CO B=—2+CO B =c¢o B
X r r

C(xlogr +6 A . A
p= Clogr+o) . B =C(r)+2d6 B=C®).

C(®)
=72

2
,
Here we assume thaly # 0 andC’ # 0. In the second step one replaces each of these
functions B and the resulting form of;, &, no andt into the vector-valued compatibility
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condition (9) in order to determine the functioh&for which the final form of;, &, no and
7 is nontrivial.

We next present the exhaustive list of functiéghg: 0 andM for which the Fokker—Planck
equation (2) possesses nontrivial symmetries. We provide in each case the explicit form of the
functionsé,, &, no, T, and¢; determining the symmetry generators via the formulat

T T
X = (G + &1y &) 0+ (53 = ax +10) 8 + 70, + Puud. (24)

Case 2.1aB = % +co, M = C(x) +cy, (s =1).

Co .
T=£=%§=0 no = Po ¢1=ﬂo<A2+70—cox—ct).

Case 2.1b:B = & + 2o, M = C(x) + c(éox — L)y + 52, (s = 1.

. . Co .
T=§6=§=0 no = 1€ ¢1=/31€”(A2+70—cox—cy).

Case 2.2aB = % M=%+<4+c, (s =2).

8 ¢ A ¢
¢1=_l T'A+Ly+c;—y—<¥+£+260>l + Bo A2+—O .
2 X Co Co X X

Case 2.2b:B = S8, M = C°+ +c(c°+ “)y+—r2+Co. (s =2).

AZ’
., aé
T=8e™ h=k=0 n=pe - e
Co
2
p1=—81|cr- A+cr?+ —2 cCoy 2acy —A2+—+co+ ? —c|e?
X Co  Co x 2cC?

p
+B1| A2 +cy+ Uy LA e .
X cCo
Case3.1aB = &, M = C(rlogr +6) +co; C' #0, (s = 1).

TZ(S]_I %’1:— Eoznozo
8 R .
b1 = El(r.A+c09 +1(Cologr — r A A) — 2cqt).

T The general form of the functiapy (x, y, r) can be found provided the first compatibility condition (8) holds. In
practice, however, it is preferable to give a simpler expression for each particular case.
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Case3.1b:B = 9 +ép, M = C (&% |ogr+9)r*2+(g—2§ +62) = + 8l logr+£6 +co, (s = 1).

e Cod1 ¢
T = 8le_L/COt El = ——Ozle_c/COZ éO =10 = 0

81 _eséor [ € c? 2 2 c
pr=——eY —r. A+ | = +75| = +éo(Cologr —r A A) +cO +2c0 — —
2 Co (o3 2 Co

0
with ¢ # 0.

A "2 A A
Case 3.2aB = % +8, M = Cor—2+ ir2 + % logr +cq, (s = 2).

T =61t $1=—Tl+7/ &o=1n0=0

8 R Cod1t A Cor?
¢1 = El(r-A+Cot9)+ <C021 —y) (TAA—Cologr— %) — codyt.

. Co 4 A 2 2 a2 &G
Case 3.2b:B = 2 +¢o, M = Cor = + (2—5 +Co)g + 52 logr + 56 +co, (s = 2).

e Cod1 ¢
T=e Y =Ty g =0 =0

81 _ e ¢ c 51 c? r2
_ —c/Cot ec/Cor 2

=—-4€ =T A+ch+2c0— - - t =y
n="2 <Cor “re Co> (yco 2 (cg c°>> 2

N )
+ (Co—zlec/c"’ - y) (r A A—Cologr)

with ¢ #£ 0.
Case 3.3:.B = % +Co, M =C(r)+db, (s =1).
T=%=n=0 §r=vy ¢1=y(éologr+c—20r2—r/\A+dt>

. 2 (2. 2 ol
with C(r) # Cor 2+ (% + D)2 + %o jogr + co.
0

Case 4.1:B = &, M = C(Alogr +0)r 2+ (L +17)% +co, (s = 1).
T = 8y o/M £ = c081 e 0o/M fo=1no=0
K r? 2
b1 = lCO g Co/M (A 7 A+l +AT 2)— —rAA+ S o >
Co
with C’ # 0 # 1.

"2
Case 4.2a:B = &y, M = Cor 2+ Lr?+co, (s = 3).

T=82 0 B = —6—20(321‘2 +an+y  Eo=no=0

z : 5 5 51
¢1 = <c—20(82t2 +6u1) — y) (7‘ NA - c—2°r2> L cozl (82t + —> (r- A — cot).
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~ 2+¢2
Case 4.2b:B = ¢y, M = Cyr sor? (s = 3).

=88 H5he T = —C—2°<61e“ +56 ) +y  &=no=0

246

¢P1 = (516" + 8,67 (—r/\A ¢ 7 Orz—co>+y<c—20r2—r/\A>

+§(81e” — 86N (r-A-1).

Case4.3:B =g, M = = BLO 2+ ax +by+co, (s =7).
The functiong and¢; are given as in case 4.2a (case 4.2bxf 0 (¢ # 0). The functions
& andng are the general solution of the linear second-order system with constant coefficients
given byt
c?+¢2

A 3a ¢
Eore — OEO"'CO’)Ot = ?Tz"'b(Ef_V)

2+ Cobe = 3b o (25)
Nott 2 no COOt—ZTz a 2T V-
The functiong; in (24) is then computed from equations (6) and (7) as usual.
Case4.4B=co,M =C(r)+do, (s = 1).
C
T=8=mn=0 1=y ¢1=y(30r2—rAA+dt>
with C(r) # Cor =2+ C1r? + ¢oif d = 0.
Case 4.5aB = co, M = %xz +ax +by +co, (s = 4).
¢ 2
T=§6=0 £o = aat? + ot + g U0=%t3+coall‘2+ CoOlo—ﬂ t+ o
3 2 Co
O[_z 3, %1 ~
p1=p-A— ( (3[ +2l +(X0l>+/30€0+0(1)x

20tp 4 3
+22y — [ Goanb— + (Coorb + 200a) —
2 y <000!2 1 (Coary 2a) 6

. 200b 12
+ — +(Bob +aga)t ).
Co 2

Case 4.5b:B =cg, M = ¢ LO 2+a)c+by+c0, (s =4).

T=£§= £ = 1€ + o€ + a3
A~ A 2 A2
Cooty cootz .,  (c“+chHas
no = e’ — e+ 01+ o
c c ¢o

0[3C

br=p- A= ((Ze - Ze vanr) (¢ + &)+ ofo)

b(c? + {2
- (“—;(ac +big)e" + =5 (—ac +bige™ + = (a + u) 12+ ﬂobt) :
c C 0

C

T The resulting expressions &f andng are too cumbersome to be displayed here.
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Case 4.6:B = ¢g, M = c(x? — y?) +ax + by + co, (s = 4).

T = él =0 SO = Ol]_e)u't +Olze_)”l + 0[36)“’[ + ()(46_)“*[
2c — A2 2c — A2 2c — 2c — A2
no= ———a€" — ——ae " + 0636)"” - e
Col+ CoM+ Cor_ Cor—

¢1=P'A—($0z+50770)x+(5o§o—710r)y—a/fo—b/ no

wherer, = 3 (—ég + /¢ + 16c4>.

Case 4.7a:B = ¢o, M = C(x) + by, (s = 1).
T=£§=%§=0 no = Bo ¢1 = Po(A2 — Cox — bt)
with C(x) # Cox? + ax + co.

Case 4.7b:B =cg, M = C(x) + %yz +cCoxy + by, (s = 1).
. b
T=§=£§=0 no = 1€ ¢1=ﬂleCt<A2—Cox—Cy—;)

with C(x) # Cox? + ax + co.

Case5.1a:B = €9y = €D, (s =1).

Iz

) o .
T=8t G =F=no=0 ¢1=§(T-A+/C<e)>

with C(6) # (Cocost + Cysind)~2 andC’ + 0.

Case5.1b:B = S8, M = €@ + <24 ¢ 17 C6), (s = D).

—Cl 8167 C2 0*\
T =48 §1=%8=mn0=0 ¢1=—7e reAtori=1+ [ CO)

with € (6) # (Cocost + Cysing)~2 andC’ # 0.

Case 6.1a:B = S&109r+0) py _ CGI0grio) o (o — 7).
r r
A8t

T = 41t ‘§1=7

81 Alogr+o
¢1—2( <A — M’/\A+/ C(s)ds—2cot).

§o=1n0=0

o N 2
Case 6.1b:B = <A + &, M = SHE) o Sy 17 () s+ B(L+ 2722 + e,
(s =1).
Co/At S C081 7Co/lt

T =456 §o=mn=0

5 Alogr+6 2col
b1 — Col —co/M< A+2Hr2+r. A — M-AA+/ Cls)ds + ZZ 1>'
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Case7.1aB = C(r), M = C(r) +db, (s = 1).
=0 &L=y &o=1n0=0 ¢1=)/</ ré(V)—TAA+dt>

with C(r) # Cor 2 + &.

Case 7.1b:B = C(r) +2d6, M = C(r) + d [" rC(r) +d)0 + i;r292, (s =1).

=0 £ = ye Eo=1n0=0 ¢1=yeﬂ’(/ré(r)—mA+cir29+g>.

Case 8.1a:B = C(x), M = by +co, (s = 1).
T=£§=%§=0 no = Po ¢>1=ﬂo<A2—/ é(X)—bt>

with € (x) # Cox 2+ &o.
Case 8.1b:B = C(x), M = %yz +(c [* C(x) +b)y +co, (s = 1).

N b
T=§6=§=0 no = P1€”’ ¢1=ﬁ19“(A2—Cy—/ C(x)——)

c

with C(x) # Cox 2+ &o.

4. Example

In this section we illustrate the construction of group-invariant solutions for a physically
significant family of Fokker—Planck equations (2) with irrotational drift vectors. Let

A(x,y) = arlogx +azy
wherea; > 0 anda, are constants. The Fokker—Planck equation (2) with drift vector

A=VA= (% az) (26)

describes the motion of a Brownian particle subject to the fotcd2]. It follows from
equation (21) that the corresponding functignis

Therefore M belongs to the case 1.1a of our classification, with

_a@-b g 4

Co="7 2
Taking one of the parametess, 82, 1 and By equal to one and the rest equal to zero in
the formulae forr, ng andy of case 1.1a and using equation (20), we obtain the nontrivial
symmetry generators

d Y
:—8x+—
2 2

2 2
X5 =1x0, +1tyo, +t28, + <—% +t <a1 —l+ayy — %z‘)) uo,

Xe =10y + (axt — y)ud,
X7 = 8), +axud,.

1
X4 0y +10, + E(al +azy — a%t)uau



Symmetries of the Fokker—Planck equation 2683

Our purpose is to obtain explicit solutions by symmetry reduction of the Fokker—Planck
equation (2) with drift vector (26). As explained in [4, 5], in order to reduce the PDE (2) to
an ODE we need to find a two-dimensional subgroup of the whole symmetry group with two-
dimensional orbits in the space of independent variaples). An interesting such subgroup

is generated by the subalgebggs= ((v — a2) X» + 2X4, X¢), WhereX, = ud, andv is a real
parameter. A complete set of local invariants under the action of this subgroup are

(v — azf)z) ;
2t

X

7=— v:t”exp(

According to the general theory, a group-invariant solution takes the form

_ 2
u(x,y, t)=t" exp(—%) v(2).

Inserting this expression into the Fokker—Planck equation (2) with drift vector (26) we obtain
the reduced ODE for(z), namely

v”+<z—@)v’+<ﬁ;—(2V+l)>v=0 (27)
d Z

where the prime denotes the derivative with respect tbhe general solution of this equation
may be expressed in terms of confluent hypergeometric functions. Indeed, the fun@tjon
defined by

v(z) = 221e 2w (2/2)
satisfies Kummer’s equation
fwye +(ar+ 3 — Owe — (0 +Dw = 0.

The generaj, -invariant solution of the Fokker—Planck equation (2) with drift vector (26) is
therefore

2 +(y—apt)? 1 x2 1 .X'Z
u = U y2ig g’ M v+lag+—-, — |+tcU|v+Lar+ =, —
2 2t 22t

whereM (a, b, ¢) and U (a, b, ) are Kummer’s functions [15]. 1D + 1 = —n, with n a
non-negative integer, and — % is not an integer, the general solution is

S _aPry—apn? (a-1) (x? x2 1 1 3 x?
u =" y2Mme aly Y= )te(—r M| = —n—a, = —a1, —
T 2 ) T 2 b2y

_1 ) . . .
WhereL,(f1 2 are generalized Laguerre polynomials. Ifwe look for square-integrable solutions
with no space singularities we must take= 0 in the above expression.
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