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Symmetries of the Fokker–Planck equation with a constant
diffusion matrix in 2 + 1 dimensions
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Abstract. We completely classify the symmetries of the Fokker–Planck equation in two spatial
dimensions with a constant positive-definite diffusion matrix. We apply these results to construct
group-invariant solutions for a physically interesting family of Fokker–Planck equations.

1. Preliminaries

The time evolution of a stochastic process with continuous motion is described by the Fokker–
Planck equation:

∂tp(x, t) = −
n∑
i=1

∂i [Ai(x)p(x, t)] + 1
2

n∑
i,j=1

∂i∂j [Bij (x)p(x, t)] (1)

where the vectorA = (A1, . . . , An) and the symmetric matrixB = (Bij ) are known as thedrift
vectorand thediffusion matrix, respectively. The importance of the Fokker–Planck equation,
which arises in a large variety of phenomena in physics, chemistry, and biology, [1–3], cannot be
overestimated. The determination of the local Lie symmetries of the Fokker–Planck equation—
which, in turn, may be used to find group-invariant solutions by solving a differential equation
in fewer independent variables [4,5]—is therefore a relevant problem. In one spatial dimension
complete results are known. The symmetries of some particular cases of the Fokker–Planck
equation were first analysed in [6–8]. Cicogna and Vitali [9, 10] and Rudra [11], provided
an exhaustive classification of the symmetries of a generic Fokker–Planck equation in one
spatial dimension. The situation in higher dimensions is remarkably different. In fact, to
the best of the author’s knowledge, the only case which has been studied in the literature is
a special form of Kramers’ equation in 2 + 1 dimensions, for which the diffusion matrix is
constant and degenerate [8]. The aim of this paper is precisely to study the symmetries of the
Fokker–Planck equation in two spatial dimensions with a constant positive-definite diffusion
matrix. It should be emphasized that the diffusion matrix is constant in many situations of
physical interest, e.g. in a Rayleigh or in an Ornstein–Uhlenbeck process. Any Fokker–Planck
equation (1) possesses thetrivial symmetries associated to the time-translational invariance and
linearity of the equation. We shall obtain in what follows explicit conditions for the existence
of nontrivial symmetries of the Fokker–Planck equation. Then, in section 2, we determine
the general solution of these conditions in the particular case in which the drift vectorA is
irrotational and the Fokker–Planck equation is equivalent to the Schrödinger equation (with
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imaginary time). We completely classify the Fokker–Planck equations admitting nontrivial
symmetries, and we present the corresponding symmetry generators. Our results are consistent
with the classification of the symmetries of the time-dependent Schrödinger equation with
a time-independent potential previously found by Boyer [12]. In section 3 we present the
classification of the symmetries in the case in which the drift vector isnot irrotational. Finally,
in section 4 we make use of our classification to construct explicit group-invariant solutions
for a physically relevant class of Fokker–Planck equations.

Under the above assumptions, we can rewrite the Fokker–Planck equation (1) in the form†

ut = −∇ · (Au) +
β

2
1u (2)

whereβ is a nonzero real constant. We shall takeβ = 1 without any loss of generality.
Following the well known Olver procedure [4], our purpose is to determine all functionsξ , η,
τ andφ such that the second prolongation of the vector field

X = ξ(x, y, t, u)∂x + η(x, y, t, u)∂y + τ(x, y, t, u)∂t + φ(x, y, t, u)∂u (3)

is tangent to the solution manifold of equation (2). Equating to zero the coefficients of
the monomials inu and its derivatives containing second- and third-order derivatives, one
immediately obtains

τ = τ(t) ξ = τt

2
x + ξ1(t)y + ξ0(t) η = τt

2
y − ξ1(t)x + η0(t). (4)

The coefficients of the terms inu2
x andu2

y now imply that

φ = φ1(x, y, t)u + φ0(x, y, t) (5)

whereφ0 must be a solution of the Fokker–Planck equation (2). The remaining three conditions
for ux , uy andu then lead to the equations

∇φ1 = −τtt
2
r +

τt

2
(1 +r · ∇)A− ξ1t Jr − ξ1(J + r ∧ ∇)A− ρt + (ρ · ∇)A (6)

φ1t = τtt

2
(r ·A− 1)− τt

2
(2M + r · ∇M)− ξ1tr ∧A + ξ1r ∧ ∇M + ρt ·A− ρ · ∇M (7)

where

r = (x, y) J =
(

0 1
−1 0

)
ρ = (ξ0, η0) M = 1

2(A
2 +∇ ·A).

Note that in two dimensionsv ∧ w = v1w2 − v2w1 is a scalar. Imposing thatφ1xy = φ1yx ,
φ1xt = φ1tx andφ1yt = φ1ty , we obtain the compatibility conditions

−2ξ1t = τt

2
(2B + r · ∇B)− ξ1r ∧ ∇B + ρ · ∇B (8)

τttt

2
r − τt

2
(3 +r · ∇)∇M + ξ1t t Jr + ξ1∇(r ∧ ∇M) + ρt t − (ρ · ∇)∇M

= −τtt
2
BJr + ξ1tBr − BJρt (9)

whereB = ∇ ∧ A. Once a solution of equations (8), (9) has been obtained, one simply
integrates (6) and (7) to determine the corresponding functionφ1. (Recall that in one spatial
dimension there is only one such compatibility condition [9].) In general, the compatibility
conditions (8), (9) possess only the obvious solution

τt = ξ1 = ξ0 = η0 = 0 (10)

† We adopt here the usual convention of the literature on symmetries of differential equations of denoting the dependent
variable byu.
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corresponding to thetrivial symmetries

X1 = ∂t X2 = u∂u X3 = φ0∂u

which, of course, reflect the time-translational invariance and linearity of the Fokker–Planck
equation. However, just as in one spatial dimension, the compatibility conditions admit
nontrivial solutions provided there is a linear relationship between the coefficient functions of
τ , ξ1, ξ0 andη0 and their time derivatives [10,11].

2. Irrotational case: ∇∧A = 0

We shall assume in this section that the drift vectorA is irrotational, i.e. thatB vanishes
identically. The physical significance of this condition, known as the condition ofdetailed
balance, has received ample study in the literature, [2,3]. As a direct consequence, there exists
a functionA such thatA = ∇A. Note that in this case the scale transformationu 7→ v = e−Au
will map the Fokker–Planck equation (2) into the time-dependent Schrödinger equation with
imaginary time given by

−vt = − 1
21v +Mv. (11)

It follows immediately that two Fokker–Planck equations (2) with the same functionM have
isomorphic symmetry algebras. The RHS of equations (8) and (9) vanish identically, so in
particularξ1 is a constantγ . We can then integrate equation (6), obtaining

φ1 = −τtt
4
r2 +

τt

2
r · ∇A− γ r ∧ ∇A− ρt · r + ρ · ∇A + ϕ (12)

where the functionϕ(t) is determined up to a constant by equation (7) once the compatibility
conditions have been fulfilled. Moreover, the LHS of the vector-valued equation (9) may be
readily written as a gradient, leading to the single scalar equation

ω +
τttt

4
r2 − τt

2
(2 +r · ∇)M + γ (r ∧ ∇M) + ρt t · r − ρ · ∇M = 0 (13)

whereω(t) is an arbitrary function. Our purpose is to determine all possible linear relationships
between the functions 1,r2, (2 + r · ∇)M, r ∧ ∇M, x, y, Mx andMy which appear in
equation (13). Each of the relationships may lead to a nontrivial symmetry of the Fokker–
Planck equation. In order to obtain these relationships one needs to find the general solution
of certain partial differential equations.

The most general functionM consistent withτt 6= 0 must satisfy the differential equation

(2 +r · ∇)M = λ(r ∧ ∇M) +µMx + νMy + λ′r2 +µ′x + ν ′y + σ (14)

for some real parametersλ, µ, ν, λ′, µ′, ν ′ andσ . The general solution of equation (14) is

M = C(λ log r̄ + θ̄ )r̄−2 + cr̄2 + ax̄ + bȳ + c0 (15)

whereC is an arbitrary function, and

x̄ = r̄ cosθ̄ = x + x0 ȳ = r̄ sin θ̄ = y + y0

x0 = λν − µ
1 +λ2

y0 = −λµ + ν

1 +λ2

c = λ′

4
a = 3µ′ + λν ′ − 2λ′(λy0 + 3x0)

9 +λ2
b = 3ν ′ − λµ′ + 2λ′(λx0 − 3y0)

9 +λ2

(15′)

with c0 an arbitrary constant. One can likewise determine the most general functionM

compatible withτt = 0 andγ 6= 0 by solving the differential equation

r ∧ ∇M = µMx + νMy +µ′x + ν ′y + σ (16)



2674 F Finkel

for real parametersµ, ν, µ′, ν ′ andσ . The general solution of equation (16) is

M = C(r̄)− ν ′x̄ +µ′ȳ + dθ̄ (17)

whereC is an arbitrary function, and

x̄ = r̄ cosθ̄ = x − ν ȳ = r̄ sin θ̄ = y +µ d = µ′ν − µν ′ + σ. (17′)

Note thatM in equation (17) reduces to the form (15) if the constantd vanishes andC(r̄) is a
linear combination of̄r2, r̄−2 and 1. Finally, any functionM consistent withτt = γ = 0 and
ξ0 6= 0 satisfies

Mx = νMy +µ′x + ν ′y + σ (18)

for real parametersν, µ′, ν ′ andσ . The general solution of (18) is

M = C(νx + y) + 1
2(µ
′ + νν ′)x2 + ν ′xy + σx. (19)

The form of the Fokker–Planck equation (2) is invariant under rotations, translations and
dilatations of the form(r, t) 7→ (λr, λ2t),A 7→ λ−1A. Since these operations do not modify
the symmetry properties of the equation, we shall assume without any loss of generality that
x0 = y0 = 0 in equations (15′) andµ = ν = 0 in (17′), so x̄ = x, ȳ = y, r̄ = r andθ̄ = θ .
In order to determine explicitly nontrivial solutions forτ , ξ0, η0 andξ1 = γ , we substitute the
expressions (15), (17) and (19) forM into (13), and impose that the time-dependent coefficients
of each of the linearly independent functions of the spatial variables vanish identically. In so
doing, one needs to consider new possible linear relations for some particular forms of the
arbitrary functionC appearing inM. The functionϕ in equation (12) can then be determined
up to a constant from equation (7). Finally, the corresponding nontrivial symmetry generators
are obtained by substituting equations (4), (5) and (12) into (3):

X =
(τt

2
x + γy + ξ0

)
∂x +

(τt
2
y − γ x + η0

)
∂y + τ∂t

+
(
−τtt

4
r2 +

τt

2
r · ∇A− γ r ∧ ∇A− ρt · r + ρ · ∇A + ϕ

)
u∂u (20)

whereρ = (ξ0, η0) andA satisfies the nonlinear PDE

2M = (∇A)2 +1A. (21)

In what follows we provide the complete list of functionsM for which the Fokker–Planck
equation (2) admits nontrivial symmetries, up to possible translations, rotations and dilatations.
For each such functionM we give the form ofτ , ξ0, η0, γ andϕ, from which the reader can
immediately obtain the associated nontrivial symmetry generators from equation (20) by giving
suitable values to the group parametersαi , βi , γ andδi . We also denote bys the maximum
number of nontrivial symmetry generators. Note that in general the functionA cannot be
determined explicitly fromM—a step that would require solving the nonlinear PDE (21).
However, givenanyFokker–Planck equation (2) with an irrotational drift vectorA = ∇A, it
may be readily verified whether the corresponding functionM belongs to the list.

Case 1.1a:M = C0
x2 + by + c0; C0 6= 0, (s = 4).

τ = δ2t
2 + δ1t γ = ξ0 = 0 η0 = bδ2

2
t3 +

3bδ1

4
t2 + β1t + β0

ϕ = −b
2δ2

8
t4 − b

2δ1

4
t3−

(
bβ1

2
+ c0δ2

)
t2 − (δ2 + c0δ1 + bβ0)t.
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Case 1.1b:† M = C0
x2 + cr2 + by + c0; C0 6= 0, (s = 4).

τ = δ1e2
√

2ct + δ2e−2
√

2ct γ = ξ0 = 0

η0 = bδ1√
2c

e2
√

2ct +
bδ2√

2c
e−2
√

2ct + β1e
√

2ct + β2e−
√

2ct

ϕ = −
(√

2c + c0 +
b2

4c

)
δ1e2

√
2ct +

(√
2c − c0 − b

2

4c

)
δ2e−2

√
2ct

− bβ1√
2c

e
√

2ct +
bβ2√

2c
e−
√

2ct .

Case 1.2a:M = C(θ)r−2 + c0, (s = 2).

τ = δ2t
2 + δ1t γ = ξ0 = η0 = 0 ϕ = −c0δ2t

2 − (δ2 + c0δ1)t

with C(θ) 6= (C0 cosθ +C1 sinθ)−2 andC ′ 6= 0.

Case 1.2b:M = C(θ)r−2 + cr2 + c0, (s = 2).

τ = δ1e2
√

2ct + δ2e−2
√

2ct γ = ξ0 = η0 = 0

ϕ = −
(√

2c + c0

)
δ1e2

√
2ct +

(√
2c − c0

)
δ2e−2

√
2ct

with C(θ) 6= (C0 cosθ +C1 sinθ)−2 andC ′ 6= 0.

Case 1.3:M = C(λ logr + θ)r−2 + c0; C ′ 6= 0 6= λ, (s = 1).

τ = 2γ

λ
t ξ0 = η0 = 0 ϕ = −2c0γ

λ
t.

Case 1.4a:M = C0r
−2 + ax + by + c0; C0 6= 0, (s = 3).

τ = δ2t
2 + δ1t ξ0 = η0 = 0 ϕ = −c0δ2t

2 − (δ2 + c0δ1)t

with the constraintδ1 = δ2 = 0 if a 6= 0 orb 6= 0.

Case 1.4b:M = C0r
−2 + cr2 + ax + by + c0; C0 6= 0, (s = 3).

τ = δ1e2
√

2ct + δ2e−2
√

2ct ξ0 = η0 = 0

ϕ = −
(√

2c + c0

)
δ1e2

√
2ct +

(√
2c − c0

)
δ2e−2

√
2ct

with the constraintδ1 = δ2 = 0 if a 6= 0 orb 6= 0.

Case 1.5a:M = ax + by + c0, (s = 7).

τ = δ2t
2 + δ1t

ξ0 = aδ2

2
t3 +

1

4
(3aδ1− 2bγ )t2 + α1t + α0

η0 = bδ2

2
t3 +

1

4
(3bδ1 + 2aγ )t2 + β1t + β0

ϕ = − 1
8(a

2 + b2)δ2t
4 − 1

4(a
2 + b2)δ1t

3− ( 1
2(aα1 + bβ1) + c0δ2)t

2

−(δ2 + c0δ1 + aα0 + bβ0)t.

† The parameterc which appears in cases b and case 1.7a is assumed to be nonzero.
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Case 1.5b:M = cr2 + ax + by + c0, (s = 7).

τ = δ1e2
√

2ct + δ2e−2
√

2ct

ξ0 = aδ1√
2c

e2
√

2ct +
aδ2√

2c
e−2
√

2ct + α1e
√

2ct + α2e−
√

2ct +
bγ

2c

η0 = bδ1√
2c

e2
√

2ct +
bδ2√

2c
e−2
√

2ct + β1e
√

2ct + β2e−
√

2ct − aγ
2c

ϕ = −
(√

2c + c0 +
a2 + b2

4c

)
δ1e2

√
2ct +

(√
2c − c0 − a

2 + b2

4c

)
δ2e−2

√
2ct

−aα1 + bβ1√
2c

e
√

2ct +
aα2 + bβ2√

2c
e−
√

2ct .

Case 1.6:M = C(r) + dθ , (s = 1).

τ = ξ0 = η0 = 0 ϕ = dγ t
with C(r) 6= C0r

−2 +C1r
2 + c0 if d = 0.

Case 1.7a:M = cx2 + ax + by + c0, (s = 4).

τ = γ = 0 ξ0 = α1e
√

2ct + α2e−
√

2ct η0 = β1t + β0

ϕ = − aα1√
2c

e
√

2ct +
aα2√

2c
e−
√

2ct − bβ1

2
t2 − bβ0t.

Case 1.7b:M = c(x2 − y2) + ax + by + c0, (s = 4).

τ = γ = 0 ξ0 = α1e
√

2ct + α2e−
√

2ct η0 = β1e
√−2ct + β2e−

√−2ct

ϕ = − aα1√
2c

e
√

2ct +
aα2√

2c
e−
√

2ct − bβ1√−2c
e
√−2ct +

bβ2√−2c
e−
√−2ct .

Case 1.8a:M = C(x) + by, (s = 2).

τ = γ = ξ0 = 0 η0 = β1t + β0 ϕ = −bβ1

2
t2 − bβ0t

with C0x
2 + ax + c0 6= C(x) 6= C0

x2 + c0.

Case 1.8b:M = C(x) + cy2 + by, (s = 2).

τ = γ = ξ0 = 0 η0 = β1e
√

2ct + β2e−
√

2ct

ϕ = − bβ1√
2c

e
√

2ct +
bβ2√

2c
e−
√

2ct

with C0x
2 + ax + c0 6= C(x) 6= C0

x2 + cx2 + c0.
The list above could be further reduced† by using point transformations preserving the form

of the Fokker–Planck equation (2) involving the dependent variableu. Although no attempt
will be made here to determine the complete group of point transformations leaving the form
of equation (2) invariant, we can take advantage in the irrotational case of what is known for

† We prefer to leave the list in its present form so that the reader may check if a given Fokker–Planck equation (2)
possesses nontrivial symmetries without the need to perform complicated transformations.



Symmetries of the Fokker–Planck equation 2677

the time-dependent Schrödinger equation. In one spatial dimension, the group of projectable
point transformations preserving the form of the time-dependent Schrödinger equation was
essentially obtained by Ray [13]. A straightforward generalization of Ray’s transformations
was subsequently applied by Kaushal to the time-dependent Schrödinger equation in 2 + 1
dimensions [14]. Closely following Kaushal, it may be easily verified that the transformation

r̄ = 1

f (t)
r + g t̄ =

∫ t ds

f 2(s)
g = (g1(t), g2(t))

v̄(r̄, t̄) = exp

[
f ′

2f
r2 − f g′ · r + h(t)

]
v(r, t)

(22)

maps the time-dependent Schrödinger equation (11) into the time-dependent Schrödinger
equation

−v̄t̄ = − 1
21̄v̄ + M̄v̄

with potential

M̄ = f 2M − ff
′′

2
r2 + f 2(f g′′ + 2f ′g′) · r − f

4

2
(g′)2 + ff ′ − f 2h′. (23)

In general, the transformation (22), (23) maps a time-independent potential into a time-
dependent one, unlessf ,g andhare constants. However, for some particular time-independent
potentials and transformations, the transformed potential is also time independent. Thus, if
the functionsM andM̄ associated to a pair of Fokker–Planck equations (2) with irrotational
drift vectors are related by such a transformation, then the equations themselves are related by
a point transformation, and their symmetry groups are therefore isomorphic. This is precisely
what happens in our list among eacha andb subcases. Indeed, if

f 3f ′′ = −2c g = 0 h′ = f ′/f i.e. f 2 = 2
√

2ct h = logf

the functionM of eacha subcase is transformed into the functionM of the correspondingb
subcase. Moreover, the functionsM in cases 1.5 are equivalent under suitable transformations
of the form (22) toM = 0, so their corresponding Fokker–Planck equations may be reduced
to the heat equation.

3. Generic case:∇∧A 6= 0

In this section we shall classify all Fokker–Planck equations (2) (withβ = 1) possessing
nontrivial symmetries in the case in which the rotationalB does not vanish identically. In the
first step one needs to find the functionsB for which the first compatibility condition (8) admits
solutions different from the trivial solution (10). Just as in the previous section, each linear
relationship between 1,(2 +r · ∇)B, r ∧ ∇B, Bx andBy may lead to a nontrivial symmetry.
Note that these linear relationships are in fact first-order linear PDE’s for the rotationalB

which can be solved in closed form. The explicit forms of the functionsB satisfying one of
these linear relationships, up to possible translations, rotations, and dilatations of the form
(r, t) 7→ (λr, λ2t),A 7→ λ−1A, are:

B = Ĉ0

x2
+ ĉ0 B = Ĉ0

r2
+ ĉ0 B = ĉ0 B = Ĉ(θ)

r2

B = Ĉ(λ logr + θ)

r2
+ ĉ0 B = Ĉ(r) + 2d̂θ B = Ĉ(x).

Here we assume that̂C0 6= 0 andĈ ′ 6= 0. In the second step one replaces each of these
functionsB and the resulting form ofξ1, ξ0, η0 andτ into the vector-valued compatibility
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condition (9) in order to determine the functionsM for which the final form ofξ1, ξ0, η0 and
τ is nontrivial.

We next present the exhaustive list of functionsB 6= 0 andM for which the Fokker–Planck
equation (2) possesses nontrivial symmetries. We provide in each case the explicit form of the
functionsξ1, ξ0, η0, τ , andφ1 determining the symmetry generators via the formula†

X =
(τt

2
x + ξ1y + ξ0

)
∂x +

(τt
2
y − ξ1x + η0

)
∂y + τ∂t + φ1u∂u. (24)

Case 2.1a:B = Ĉ0
x2 + ĉ0,M = C(x) + cy, (s = 1).

τ = ξ1 = ξ0 = 0 η0 = β0 φ1 = β0

(
A2 +

Ĉ0

x
− ĉ0x − ct

)
.

Case 2.1b:B = Ĉ0
x2 + ĉ0,M = C(x) + c(ĉ0x − Ĉ0

x
)y + c2

2 y
2, (s = 1).

τ = ξ1 = ξ0 = 0 η0 = β1ect φ1 = β1ect
(
A2 +

Ĉ0

x
− ĉ0x − cy

)
.

Case 2.2a:B = Ĉ0
x2 ,M = C0

x2 + c
x

+ c0, (s = 2).

τ = δ1t ξ1 = ξ0 = 0 η0 = − cδ1

2Ĉ0

t + β0

φ1 = δ1

2

(
r ·A +

Ĉ0y

x
+
cy

Ĉ0

−
(
cA2

Ĉ0

+
c

x
+ 2c0

)
t

)
+ β0

(
A2 +

Ĉ0

x

)
.

Case 2.2b:B = Ĉ0
x2 ,M = C0

x2 + a
x

+ c( Ĉ0
x

+ a

Ĉ0
)y + c2

2 r
2 + c0, (s = 2).

τ = δ1e−2ct ξ1 = ξ0 = 0 η0 = β1e−ct − aδ1

Ĉ0

e−2ct

φ1 = −δ1

(
cr ·A + c2r2 +

cĈ0y

x
+

2acy

Ĉ0

+
a

Ĉ0

A2 +
a

x
+ c0 +

a2

2cĈ2
0

− c
)

e−2ct

+β1

(
A2 + cy +

Ĉ0

x
+

a

cĈ0

)
e−ct .

Case 3.1a:B = Ĉ0
r2 ,M = C(λ logr + θ) + c0; C ′ 6= 0, (s = 1).

τ = δ1t ξ1 = λδ1

2
ξ0 = η0 = 0

φ1 = δ1

2
(r ·A + Ĉ0θ + λ(Ĉ0 logr − r ∧A)− 2c0t).

† The general form of the functionφ1(x, y, t) can be found provided the first compatibility condition (8) holds. In
practice, however, it is preferable to give a simpler expression for each particular case.
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Case 3.1b:B = Ĉ0
r2 + ĉ0,M = C( ĉ0Ĉ0

c
logr +θ)r−2 +( c

2

Ĉ2
0

+ ĉ2
0)
r2

8 + ĉ0Ĉ0
2 logr + c

2θ +c0, (s = 1).

τ = δ1e−c/Ĉ0t ξ1 = − ĉ0δ1

2
e−c/Ĉ0t ξ0 = η0 = 0

φ1 = −δ1

2
e−c/Ĉ0t

(
c

Ĉ0

r ·A +

(
c2

Ĉ2
0

+ ĉ2
0

)
r2

2
+ ĉ0(Ĉ0 logr − r ∧A) + cθ + 2c0 − c

Ĉ0

)
with c 6= 0.

Case 3.2a:B = Ĉ0
r2 + ĉ0,M = C0r

−2 + ĉ2
0
2 r

2 + ĉ0Ĉ0
2 logr + c0, (s = 2).

τ = δ1t ξ1 = − ĉ0δ1

2
t + γ ξ0 = η0 = 0

φ1 = δ1

2
(r ·A + Ĉ0θ) +

(
ĉ0δ1t

2
− γ

)(
r ∧A− Ĉ0 logr − ĉ0r

2

2

)
− c0δ1t.

Case 3.2b:B = Ĉ0
r2 + ĉ0,M = C0r

−2 + ( c
2

Ĉ2
0

+ ĉ2
0)
r2

8 + ĉ0Ĉ0
2 logr + c

2θ + c0, (s = 2).

τ = δ1e−c/Ĉ0t ξ1 = − ĉ0δ1

2
e−c/Ĉ0t + γ ξ0 = η0 = 0

φ1 = −δ1

2
e−c/Ĉ0t

(
c

Ĉ0

r ·A + cθ + 2c0 − c

Ĉ0

)
+

(
γ ĉ0 − δ1

2
e−c/Ĉ0t

(
c2

Ĉ2
0

+ ĉ2
0

))
r2

2

+

(
ĉ0δ1

2
e−c/Ĉ0t − γ

)
(r ∧A− Ĉ0 logr)

with c 6= 0.

Case 3.3:B = Ĉ0
r2 + ĉ0,M = C(r) + dθ , (s = 1).

τ = ξ0 = η0 = 0 ξ1 = γ φ1 = γ
(
Ĉ0 logr +

ĉ0

2
r2 − r ∧A + dt

)
with C(r) 6= C0r

−2 + ( d
2

Ĉ2
0

+ ĉ2
0
4 )

r2

2 + ĉ0Ĉ0
2 logr + c0.

Case 4.1:B = ĉ0,M = C(λ logr + θ)r−2 + ĉ2
0(1 +λ−2) r

2

8 + c0, (s = 1).

τ = δ1e−ĉ0/λt ξ1 = − ĉ0δ1

2
e−ĉ0/λt , ξ0 = η0 = 0

φ1 = −δ1ĉ0

2
e−ĉ0/λt

(
λ−1r ·A + ĉ0(1 +λ−2)

r2

2
− r ∧A +

2c0

ĉ0
− λ−1

)
with C ′ 6= 0 6= λ.

Case 4.2a:B = ĉ0,M = C0r
−2 + ĉ2

0
8 r

2 + c0, (s = 3).

τ = δ2t
2 + δ1t ξ1 = − ĉ0

2
(δ2t

2 + δ1t) + γ ξ0 = η0 = 0

φ1 =
(
ĉ0

2
(δ2t

2 + δ1t)− γ
)(

r ∧A− ĉ0

2
r2

)
− δ2

2
r2 − c0δ1

2
t +

(
δ2t +

δ1

2

)
(r ·A− c0t).
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Case 4.2b:B = ĉ0,M = C0r
−2 + c2+ĉ2

0
8 r2 + c0, (s = 3).

τ = δ1ect + δ2e−ct ξ1 = − ĉ0

2
(δ1ect + δ2e−ct ) + γ ξ0 = η0 = 0

φ1 = (δ1ect + δ2e−ct )
(
ĉ0

2
r ∧A− c

2 + ĉ0

4
r2 − c0

)
+ γ

(
ĉ0

2
r2 − r ∧A

)
+
c

2
(δ1ect − δ2e−ct )(r ·A− 1).

Case 4.3:B = ĉ0,M = c2+ĉ2
0

8 r2 + ax + by + c0, (s = 7).
The functionsτ andξ1 are given as in case 4.2a (case 4.2b) ifc = 0 (c 6= 0). The functions

ξ0 andη0 are the general solution of the linear second-order system with constant coefficients
given by†

ξ0t t − c
2 + ĉ2

0

2
ξ0 + ĉ0η0t = 3a

2
τt + b

(
ĉ0

2
τ − γ

)
η0t t − c

2 + ĉ2
0

2
η0 − ĉ0ξ0t = 3b

2
τt − a

(
ĉ0

2
τ − γ

)
.

(25)

The functionφ1 in (24) is then computed from equations (6) and (7) as usual.

Case 4.4:B = ĉ0,M = C(r) + dθ , (s = 1).

τ = ξ0 = η0 = 0 ξ1 = γ φ1 = γ
(
ĉ0

2
r2 − r ∧A + dt

)
with C(r) 6= C0r

−2 +C1r
2 + c0 if d = 0.

Case 4.5a:B = ĉ0,M = ĉ2
0
2 x

2 + ax + by + c0, (s = 4).

τ = ξ1 = 0 ξ0 = α2t
2 + α1t + α0 η0 = ĉ0α2

3
t3 +

ĉ0α1

2
t2 +

(
ĉ0α0 − 2α2

ĉ0

)
t + β0

φ1 = ρ ·A−
(
ĉ2

0

(α2

3
t3 +

α1

2
t2 + α0t

)
+ β0ĉ0 + α1

)
x

+
2α2

ĉ0
y −

(
ĉ0α2b

t4

12
+ (ĉ0α1b + 2α2a)

t3

6

+

(
ĉ0α0b − 2α2b

ĉ0
+ α1a

)
t2

2
+ (β0b + a0a)t

)
.

Case 4.5b:B = ĉ0,M = c2+ĉ2
0

2 x2 + ax + by + c0, (s = 4).

τ = ξ1 = 0 ξ0 = α1ect + α2e−ct + α3

η0 = ĉ0α1

c
ect − ĉ0α2

c
e−ct +

(c2 + ĉ2
0)α3

ĉ0
t + β0

φ1 = ρ ·A−
((α1

c
ect − α2

c
e−ct + α3t

)
(c2 + ĉ2

0) + ĉ0β0

)
x − α3c

ĉ0
y

−
(
α1

c2
(ac + bĉ0)e

ct +
α2

c2
(−ac + bĉ0)e

−ct +
α3

2

(
a +

b(c2 + ĉ2
0)

ĉ0

)
t2 + β0bt

)
.

† The resulting expressions ofξ0 andη0 are too cumbersome to be displayed here.
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Case 4.6:B = ĉ0,M = c(x2 − y2) + ax + by + c0, (s = 4).

τ = ξ1 = 0 ξ0 = α1eλ+t + α2e−λ+t + α3eλ−t + α4e−λ−t

η0 = 2c − λ2
+

ĉ0λ+
α1eλ+t − 2c − λ2

+

ĉ0λ+
α2e−λ+t +

2c − λ2
−

ĉ0λ−
α3eλ−t − 2c − λ2

−
ĉ0λ−

α4e−λ−t

φ1 = ρ ·A− (ξ0t + ĉ0η0)x + (ĉ0ξ0 − η0t )y − a
∫ t

ξ0 − b
∫ t

η0

whereλ± = 1
2

(
−ĉ2

0 ±
√
ĉ4

0 + 16c4

)
.

Case 4.7a:B = ĉ0,M = C(x) + by, (s = 1).

τ = ξ1 = ξ0 = 0 η0 = β0 φ1 = β0(A2 − ĉ0x − bt)
with C(x) 6= C0x

2 + ax + c0.

Case 4.7b:B = ĉ0,M = C(x) + c2

2 y
2 + cĉ0xy + by, (s = 1).

τ = ξ1 = ξ0 = 0 η0 = β1ect φ1 = β1ect
(
A2 − ĉ0x − cy − b

c

)
with C(x) 6= C0x

2 + ax + c0.

Case 5.1a:B = Ĉ(θ)

r2 ,M = C(θ)

r2 , (s = 1).

τ = δ1t ξ1 = ξ0 = η0 = 0 φ1 = δ1

2

(
r ·A +

∫ θ

Ĉ(θ)

)
with Ĉ(θ) 6= (C0 cosθ +C1 sinθ)−2 andĈ ′ 6= 0.

Case 5.1b:B = Ĉ(θ)

r2 ,M = C(θ)

r2 + c2

8 r
2 + c

2

∫ θ
Ĉ(θ), (s = 1).

τ = δ1e−ct ξ1 = ξ0 = η0 = 0 φ1 = −δ1c

2
e−ct

(
r ·A +

c

2
r2 − 1 +

∫ θ

Ĉ(θ)

)
with Ĉ(θ) 6= (C0 cosθ +C1 sinθ)−2 andĈ ′ 6= 0.

Case 6.1a:B = Ĉ(λ logr+θ)
r2 ,M = C(λ logr+θ)

r2 + c0, (s = 1).

τ = δ1t ξ1 = λδ1

2
ξ0 = η0 = 0

φ1 = δ1

2

(
r ·A− λr ∧A +

∫ λ logr+θ

Ĉ(s) ds − 2c0t

)
.

Case 6.1b:B = Ĉ(λ logr+θ)
r2 + ĉ0, M = C(λ logr+θ)

r2 + ĉ0
2λ

∫ λ logr+θ
Ĉ(s) ds + ĉ2

0
8 (1 + λ−2)r2 + c0,

(s = 1).

τ = δ1e−ĉ0/λt ξ1 = − ĉ0δ1

2
e−ĉ0/λt ξ0 = η0 = 0

φ1 = − ĉ0δ1

2λ
e−ĉ0/λt

(
ĉ0

2
(λ + λ−1)r2 + r ·A− λr ∧A +

∫ λ logr+θ

Ĉ(s) ds +
2c0λ

ĉ0
− 1

)
.
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Case 7.1a:B = Ĉ(r),M = C(r) + dθ , (s = 1).

τ = 0 ξ1 = γ ξ0 = η0 = 0 φ1 = γ
(∫ r

rĈ(r)− r ∧A + dt

)
with Ĉ(r) 6= Ĉ0r

−2 + ĉ0.

Case 7.1b:B = Ĉ(r) + 2d̂θ ,M = C(r) + (d̂
∫ r
rĈ(r) + d)θ + d̂2

2 r
2θ2, (s = 1).

τ = 0 ξ1 = γed̂t ξ0 = η0 = 0 φ1 = γed̂t
(∫ r

rĈ(r)− r ∧A + d̂r2θ +
d

d̂

)
.

Case 8.1a:B = Ĉ(x),M = by + c0, (s = 1).

τ = ξ1 = ξ0 = 0 η0 = β0 φ1 = β0

(
A2 −

∫ x

Ĉ(x)− bt
)

with Ĉ(x) 6= Ĉ0x
−2 + ĉ0.

Case 8.1b:B = Ĉ(x),M = c2

2 y
2 + (c

∫ x
Ĉ(x) + b)y + c0, (s = 1).

τ = ξ1 = ξ0 = 0 η0 = β1ect φ1 = β1ect
(
A2 − cy −

∫ x

Ĉ(x)− b
c

)
with Ĉ(x) 6= Ĉ0x

−2 + ĉ0.

4. Example

In this section we illustrate the construction of group-invariant solutions for a physically
significant family of Fokker–Planck equations (2) with irrotational drift vectors. Let

A(x, y) = a1 logx + a2y

wherea1 > 0 anda2 are constants. The Fokker–Planck equation (2) with drift vector

A = ∇A =
(a1

x
, a2

)
(26)

describes the motion of a Brownian particle subject to the forceA, [2]. It follows from
equation (21) that the corresponding functionM is

2M = a1(a1− 1)

x2
+ a2

2.

Therefore,M belongs to the case 1.1a of our classification, with

C0 = a1(a1− 1)

2
b = 0 c0 = a2

2

2
.

Taking one of the parametersδ1, δ2, β1 andβ0 equal to one and the rest equal to zero in
the formulae forτ , η0 andϕ of case 1.1a and using equation (20), we obtain the nontrivial
symmetry generators

X4 = x

2
∂x +

y

2
∂y + t∂t +

1

2
(a1 + a2y − a2

2t)u∂u

X5 = tx∂x + ty∂y + t2∂t +

(
− r

2

2
+ t

(
a1− 1 +a2y − a

2
2

2
t

))
u∂u

X6 = t∂y + (a2t − y)u∂u
X7 = ∂y + a2u∂u.
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Our purpose is to obtain explicit solutions by symmetry reduction of the Fokker–Planck
equation (2) with drift vector (26). As explained in [4, 5], in order to reduce the PDE (2) to
an ODE we need to find a two-dimensional subgroup of the whole symmetry group with two-
dimensional orbits in the space of independent variables(r, t). An interesting such subgroup
is generated by the subalgebrasgν = 〈(ν − a2)X2 + 2X4, X6〉, whereX2 = u∂u andν is a real
parameter. A complete set of local invariants under the action of this subgroup are

z = x√
t

v = t−ν exp

(
(y − a2t)

2

2t

)
u.

According to the general theory, a group-invariant solution takes the form

u(x, y, t) = tν exp

(
− (y − a2t)

2

2t

)
v(z).

Inserting this expression into the Fokker–Planck equation (2) with drift vector (26) we obtain
the reduced ODE forv(z), namely

v′′ +
(
z− 2a1

z

)
v′ +

(
2a1

z2
− (2ν + 1)

)
v = 0 (27)

where the prime denotes the derivative with respect toz. The general solution of this equation
may be expressed in terms of confluent hypergeometric functions. Indeed, the functionw(ζ )

defined by

v(z) = z2a1e−z
2/2w(z2/2)

satisfies Kummer’s equation

ζwζζ + (a1 + 1
2 − ζ )wζ − (ν + 1)w = 0.

The generalgν-invariant solution of the Fokker–Planck equation (2) with drift vector (26) is
therefore

u = tν+a1x2a1e−
x2+(y−a2t)2

2t

(
c1M

(
ν + 1, a1 +

1

2
,
x2

2t

)
+ c2U

(
ν + 1, a1 +

1

2
,
x2

2t

))
whereM(a, b, ζ ) andU(a, b, ζ ) are Kummer’s functions [15]. Ifν + 1 = −n, with n a
non-negative integer, anda1− 1

2 is not an integer, the general solution is

u = ta1−n−1x2a1e−
x2+(y−a2t)2

2t

(
c1L

(a1− 1
2)

n

(
x2

2t

)
+ c2(

x2

t
)

1
2−a1M

(
1

2
− n− a1,

3

2
− a1,

x2

2t

))
whereL

(a1− 1
2 )

n are generalized Laguerre polynomials. If we look for square-integrable solutions
with no space singularities we must takec2 = 0 in the above expression.
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